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Although we cannot divide both sides of a congruence by any integer to produce a valid
congruence, we can if this integer is relatively prime to the modulus. Theorem 7 establishes this
important fact. We use Lemma 2 in the proof.

THEOREM 7 Let m be a positive integer and let a, b, and c be integers. If ac ≡ bc (mod m) and
gcd(c, m) = 1, then a ≡ b (mod m).

Proof: Because ac ≡ bc (mod m), m | ac − bc = c(a − b). By Lemma 2, because
gcd(c, m) = 1, it follows that m | a − b. We conclude that a ≡ b (mod m).

Exercises

1. Determine whether each of these integers is prime.
a) 21 b) 29
c) 71 d) 97
e) 111 f ) 143

2. Determine whether each of these integers is prime.
a) 19 b) 27
c) 93 d) 101
e) 107 f ) 113

3. Find the prime factorization of each of these integers.
a) 88 b) 126 c) 729
d) 1001 e) 1111 f ) 909,090

4. Find the prime factorization of each of these integers.
a) 39 b) 81 c) 101
d) 143 e) 289 f ) 899

5. Find the prime factorization of 10!.
∗6. How many zeros are there at the end of 100!?
7. Express in pseudocode the trial division algorithm for
determining whether an integer is prime.

8. Express in pseudocode the algorithm described in the text
for finding the prime factorization of an integer.

9. Show that if am + 1 is composite if a and m are integers
greater than 1 and m is odd. [Hint: Show that x + 1 is a
factor of the polynomial xm + 1 if m is odd.]

10. Show that if 2m + 1 is an odd prime, then m = 2n

for some nonnegative integer n. [Hint: First show that
the polynomial identity xm + 1 = (xk + 1)(xk(t−1) −
xk(t−2) + · · ·− xk + 1) holds, where m = kt and t
is odd.]

∗11. Show that log2 3 is an irrational number. Recall that an ir-
rational number is a real number x that cannot be written
as the ratio of two integers.

12. Prove that for every positive integer n, there are n con-
secutive composite integers. [Hint: Consider the n con-
secutive integers starting with (n + 1)! + 2.]

∗13. Prove or disprove that there are three consecutive odd
positive integers that are primes, that is, odd primes of
the form p, p + 2, and p + 4.

14. Which positive integers less than 12 are relatively prime
to 12?

15. Which positive integers less than 30 are relatively prime
to 30?

16. Determine whether the integers in each of these sets are
pairwise relatively prime.
a) 21, 34, 55 b) 14, 17, 85
c) 25, 41, 49, 64 d) 17, 18, 19, 23

17. Determine whether the integers in each of these sets are
pairwise relatively prime.
a) 11, 15, 19 b) 14, 15, 21
c) 12, 17, 31, 37 d) 7, 8, 9, 11

18. We call a positive integer perfect if it equals the sum of
its positive divisors other than itself.
a) Show that 6 and 28 are perfect.
b) Show that 2p−1(2p − 1) is a perfect number when
2p − 1 is prime.

19. Show that if 2n − 1 is prime, then n is prime. [Hint: Use
the identity 2ab − 1 = (2a − 1) · (2a(b−1) + 2a(b−2) +
· · · + 2a + 1).]

20. Determine whether each of these integers is prime, veri-
fying some of Mersenne’s claims.
a) 27 − 1 b) 29 − 1
c) 211 − 1 d) 213 − 1

The value of the Euler φ-function at the positive integer n
is defined to be the number of positive integers less than or
equal to n that are relatively prime to n. [Note: φ is the Greek
letter phi.]
21. Find these values of the Euler φ-function.

a) φ(4). b) φ(10). c) φ(13).
22. Show that n is prime if and only if φ(n) = n− 1.
23. What is the value of φ(pk) when p is prime and k is a

positive integer?
24. What are the greatest common divisors of these pairs of

integers?
a) 22 · 33 · 55, 25 · 33 · 52
b) 2 · 3 · 5 · 7 · 11 · 13, 211 · 39 · 11 · 1714
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c) 17, 1717 d) 22 · 7, 53 · 13
e) 0, 5 f ) 2 · 3 · 5 · 7, 2 · 3 · 5 · 7

25. What are the greatest common divisors of these pairs of
integers?
a) 37 · 53 · 73, 211 · 35 · 59
b) 11 · 13 · 17, 29 · 37 · 55 · 73
c) 2331, 2317
d) 41 · 43 · 53, 41 · 43 · 53
e) 313 · 517, 212 · 721
f ) 1111, 0

26. What is the least common multiple of each pair in Exer-
cise 24?

27. What is the least common multiple of each pair in Exer-
cise 25?

28. Find gcd(1000, 625) and lcm(1000, 625) and verify that
gcd(1000, 625) · lcm(1000, 625) = 1000 · 625.

29. Find gcd(92928, 123552) and lcm(92928, 123552), and
verify that gcd(92928, 123552) · lcm(92928, 123552) =
92928 · 123552. [Hint: First find the prime factorizations
of 92928 and 123552.]

30. If the product of two integers is 273852711 and their great-
est common divisor is 23345, what is their least common
multiple?

31. Show that if a and b are positive integers, then ab =
gcd(a, b) · lcm(a, b). [Hint:Use the prime factorizations
of a and b and the formulae for gcd(a, b) and lcm(a, b)
in terms of these factorizations.]

32. Use the Euclidean algorithm to find
a) gcd(1, 5). b) gcd(100, 101).
c) gcd(123, 277). d) gcd(1529, 14039).
e) gcd(1529, 14038). f ) gcd(11111, 111111).

33. Use the Euclidean algorithm to find
a) gcd(12, 18). b) gcd(111, 201).
c) gcd(1001, 1331). d) gcd(12345, 54321).
e) gcd(1000, 5040). f ) gcd(9888, 6060).

34. How many divisions are required to find gcd(21, 34) us-
ing the Euclidean algorithm?

35. How many divisions are required to find gcd(34, 55) us-
ing the Euclidean algorithm?

∗36. Show that if a and b are both positive integers, then
(2a − 1) mod (2b − 1) = 2a mod b − 1.

∗37. Use Exercise 36 to show that if a and b are posi-
tive integers, then gcd(2a − 1, 2b − 1) = 2gcd(a, b) − 1.
[Hint: Show that the remainders obtained when the Eu-
clidean algorithm is used to compute gcd(2a − 1, 2b − 1)
are of the form 2r − 1, where r is a remainder arising
when the Euclidean algorithm is used to find gcd(a, b).]

38. Use Exercise 37 to show that the integers 235 − 1, 234 −
1, 233 − 1, 231 − 1, 229 − 1, and 223 − 1 are pairwise
relatively prime.

39. Using the method followed in Example 17, express the
greatest common divisor of each of these pairs of integers
as a linear combination of these integers.
a) 10, 11 b) 21, 44 c) 36, 48
d) 34, 55 e) 117, 213 f ) 0, 223
g) 123, 2347 h) 3454, 4666 i) 9999, 11111

40. Using the method followed in Example 17, express the
greatest common divisor of each of these pairs of integers
as a linear combination of these integers.
a) 9, 11 b) 33, 44 c) 35, 78
d) 21, 55 e) 101, 203 f ) 124, 323
g) 2002, 2339 h) 3457, 4669 i) 10001, 13422

The extended Euclidean algorithm can be used to express
gcd(a, b) as a linear combination with integer coefficients of
the integers a and b.We set s0 = 1, s1 = 0, t0 = 0, and t1 = 1
and let sj = sj−2 − qj−1sj−1 and tj = tj−2 − qj−1tj−1 for
j = 2, 3, . . . , n, where the qj are the quotients in the di-
visions used when the Euclidean algorithm finds gcd(a, b),
as shown in the text. It can be shown (see [Ro10]) that
gcd(a, b) = sna + tnb. The main advantage of the extended
Euclidean algorithm is that it uses one pass through the steps
of the Euclidean algorithm to find Bézout coefficients of a
and b, unlike the method in the text which uses two passes.
41. Use the extended Euclidean algorithm to express

gcd(26, 91) as a linear combination of 26 and 91.
42. Use the extended Euclidean algorithm to express

gcd(252, 356) as a linear combination of 252 and 356.
43. Use the extended Euclidean algorithm to express

gcd(144, 89) as a linear combination of 144 and 89.
44. Use the extended Euclidean algorithm to express

gcd(1001, 100001) as a linear combination of 1001 and
100001.

45. Describe the extended Euclidean algorithm using pseu-
docode.

46. Find the smallest positive integer with exactly n different
positive factors when n is
a) 3. b) 4. c) 5.
d) 6. e) 10.

47. Can you find a formula or rule for the nth term of a se-
quence related to the prime numbers or prime factoriza-
tions so that the initial terms of the sequence have these
values?
a) 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, . . .
b) 1, 2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, . . .
c) 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, . . .
d) 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, . . .
e) 1, 2, 3, 3, 5, 5, 7, 7, 7, 7, 11, 11, 13, 13, . . .
f ) 1, 2, 6, 30, 210, 2310, 30030, 510510, 9699690,
223092870, . . .

48. Can you find a formula or rule for the nth term of a se-
quence related to the prime numbers or prime factoriza-
tions so that the initial terms of the sequence have these
values?
a) 2, 2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, . . .
b) 0, 1, 2, 2, 3, 3, 4, 4, 4, 4, 5, 5, 6, 6, . . .
c) 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, . . .
d) 1, −1, −1, 0, −1, 1, −1, 0, 0, 1, −1, 0, −1, 1, 1, . . .
e) 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, . . .
f ) 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, . . .

49. Prove that the product of any three consecutive integers
is divisible by 6.



274 4 / Number Theory and Cryptography

50. Show that if a, b, andm are integers such thatm ≥ 2 and
a ≡ b (mod m), then gcd(a, m) = gcd(b, m).

∗51. Prove or disprove that n2 − 79n + 1601 is prime when-
ever n is a positive integer.

52. Prove or disprove that p1p2 · · · pn + 1 is prime for every
positive integer n, where p1, p2, . . . , pn are the n small-
est prime numbers.

53. Show that there is a composite integer in every arithmetic
progression ak + b, k = 1, 2, . . . where a and b are pos-
itive integers.

54. Adapt the proof in the text that there are infinitely many
primes to prove that there are infinitely many primes
of the form 3k + 2, where k is a nonnegative inte-
ger. [Hint: Suppose that there are only finitely many
such primes q1, q2, . . . , qn, and consider the number
3q1q2 · · · qn − 1.]

55. Adapt the proof in the text that there are infinitely many
primes to prove that there are infinitely many primes

of the form 4k + 3, where k is a nonnegative inte-
ger. [Hint: Suppose that there are only finitely many
such primes q1, q2, . . . , qn, and consider the number
4q1q2 · · · qn − 1.]

∗56. Prove that the set of positive rational numbers is countable
by setting up a function that assigns to a rational num-
ber p/q with gcd(p, q) = 1 the base 11 number formed
by the decimal representation of p followed by the base
11 digit A, which corresponds to the decimal number 10,
followed by the decimal representation of q.

∗57. Prove that the set of positive rational numbers is countable
by showing that the functionK is a one-to-one correspon-
dence between the set of positive rational numbers and
the set of positive integers ifK(m/n) = p
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4.4 Solving Congruences

Introduction

Solving linear congruences, which have the form ax ≡ b (mod m), is an essential task in the
study of number theory and its applications, just as solving linear equations plays an important
role in calculus and linear algebra. To solve linear congruences, we employ inverses modulom.
We explain how to work backwards through the steps of the Euclidean algorithm to find inverses
modulo m. Once we have found an inverse of a modulo m, we solve the congruence ax ≡ b
(mod m) by multiplying both sides of the congruence by this inverse.

Simultaneous systems of linear congruence have been studied since ancient times. For
example, the Chinese mathematician Sun-Tsu studied them in the first century. We will show
how to solve systems of linear congruences modulo pairwise relatively prime moduli. The result
we will prove is called the Chinese remainder theorem, and our proof will give a method to
find all solutions of such systems of congruences. We will also show how to use the Chinese
remainder theorem as a basis for performing arithmetic with large integers.

We will introduce a useful result of Fermat, known as Fermat’s little theorem, which states
that ifp is prime andp does not divide a, then ap−1 ≡ 1 (mod p).Wewill examine the converse
of this statement,whichwill lead us to the concept of a pseudoprime.Apseudoprimem to the base
a is a composite integerm that masquerades as a prime by satisfying the congruence am−1 ≡ 1
(mod m). We will also give an example of a Carmichael number, which is a composite integer
that is a pseudoprime to all bases a relatively prime to it.

We also introduce the notion of discrete logarithms, which are analogous to ordinary loga-
rithms. To define discrete logarithms we must first define primitive roots. A primitive root of a
prime p is an integer r such that every integer not divisible by p is congruent to a power of r
modulo p. If r is a primitive root of p and re ≡ a (mod p), then e is the discrete logarithm of a
modulo p to the base r . Finding discrete logarithms turns out to be an extremely difficult prob-
lem in general. The difficulty of this problem is the basis for the security of many cryptographic
systems.


